

CNS tumors and space occupying lesions (ID#2396) Fahd Al-Mulla Hamad Yaseen

Weekly Learning Objective(s):

 Describe the origin, localisation and morphological characteristics of primary brain tumours: gliomas, medulloblastomas, meningiomas and Schwannomas.(WLO2429)

Objectives:

- 1. Describe the different types of CNS tumours.
- 2. Describe gross and microscopic features of common CNS tumors.
- 3. Explain the special aspects of CNS tumours as compared to tumours elsewhere in the body.
- 4. Explain the differences in the pattern and behaviour of CNS tumours between children and adults.
- 5. Describe the clinico-pathological features of common CNS tumours.
- 6. Explain prognostic indicators in CNS tumours.
- 7. Describe the pathology of other space occupying lesions

The Brain .. Overview

- Adult brain weighs an average of 1.5 Kg.
- One of the most , if not the most, organ in our bodies
- Hosts about <u>100 billion neurons and</u> <u>10x more glial cells</u> organized in distinct and complex functional and anatomical structures.

Neurons

- •The main functional and cellular component of the nervous system.
- •They are electrically excitable cells capable of processing and transmitting information signals in the form of action potentials.

Glial Cells • Supportive role.

Astrocytes

- Functional support: Signal modulation
- Physical support
- Nutritive support

 Mainly involved in insulation of neurons axons with a lipid-rich membrane called "myelin".

CNS T'

What is a Brain Tumor?

- The World Health Organization (WHO) recognizes 120+ different types of brain tumors
 - Basic types:
 - Tumors <u>of</u> the Brain Gliomas –
 - Tumors to the Brain Metastases
 - Tumors <u>On</u> the Brain Meningiomas, Pituitary Tumors, Acoustic Neuromas, etc.

General Considerations

- CNS tumors second commonest tumor in children and sixth in adults.
- Peak incidence at 1st and 5th decades
- Supratentorial tumors in adults
- In adults 70% are supratentional
- Infratentorial tumors in childhood
- In children 70% are sited in the posterior fossa and are intrinsic.

Classification - CNS tumours

Cell of origin

 Glial cells (Astrocyte, Oligodendrocyte, ependyma, Primitive Glial cell-microglia)

CNS tumour

Astrocytoma, oligodendroglioma ependymoma, glioblastoma

Primitive
 Neuroectodermal cells

Medulloblastoma,

- Arachnoidal cell
- Nerve sheath cells
- Lymphoreticular cells

Meningioma

Schwannoma, neurofibroma

Lymphoma

CNS Tumours

- Intrinsic of glial origin
- (all primary in children 65% primary in adults)
 - astrocytomas
 - glioblastoma
 - oligodendroglioma
 - ependymoma
 - choroid plexus papilloma
 - PNET medulloblastoma
 - Hemangioblastoma
 - Lymphoma
- Extrinsic meninges, Cranial + spinal nerve roots
 - Metastasis
 - meningioma
 - schwannoma
 - neurofibroma

Clinicopathological features

Brain tumours may present clinically in two main ways:

- Local effects
- Destruction of functional neural tissue → *neurologic deficit* → *sensory or motor or both*.
- Irritates function area → involuntary release of neuronal activity – *manifest as seizure.*
 - Epilepsy with a temporal lobe tumour
 - paraplegia with a spinal cord tumour
- Mass effects + surrounding edema → raised intracranial pressure → headaches and vomitting
- posterior fossa tumours present with hydrocephalus, particularly in children.
- Intracranial herniation is a common mode of death

SPREAD

- Primary CNS neoplasms virtually never metastasise to other organs.
- Infiltration of adjacent tissues both within the nervous system and its coverings (including the skull) is common, for example in meningioma.
- seeding to remote parts of the nervous system by the CSF pathway for example medulloblastomas.

Age of the patient – Location of tumor

Astrocytic neoplasm

Cerebrum – middle of life + old age Cerebellum + pons – childhood Spinal cord – young adults

Oligodendrogliomas – cerebrum

Ependymoma

- IV ventricle in first three decades
- Spinal cord filum terminale

•Medulloblastoma – Cerebellum - Childhood

Intracranial Neoplasms

Incidence of Intracranial Gliomas (All Ages)

Glioblastomas 55% Astrocytomas 20% Ependymomas 5% Medulloblastomas 5% Oligodendrogliomas 5% Choroid plexus lesions, cysts, etc 10%

Incidence of Intracranial Gliomas [children]

- Astrocytomas [50%]
- Medulloblastoma [45%]
- Ependymomas [5%]

Astrocytic neoplasms Epidemiology

- 60% of brain tumors
- 7-10 cases/100,000 per year
- Grade I astrocytomas (pilocytic) in cerebellum, brainstem, and optic nerves of children
- Grade II astrocytomas in the cerebral hemispheres of 20-40 year old individuals
- High grade astrocytomas seen in older individuals

Astrocytoma:

- Headache, seizures & neurological deficits.
 - 4 tier grading system.
 - Anaplasia, cellular pleomorphism
 - Mitotic activity,
 - Necrosis &
 - Endothelial proliferation.
- Well differentiated low grade
- Anaplastic high grade
- Glioblastoma multiforme.

Astrocytoma: microscopic

Low grade- hypercellularity, pleomorphism

Anaplastic- high grade – plus will have more mitosis & vascular endothelial proliferation

 Glioblastoma multiforme- plus <u>necrosis</u> and pseudopalisades. Grossly variegated appearance (multiforme)

Astrocytoma

Astrocytoma

Pilocytic astrocytoma

- Common in childhood
- Most slow growing of the gliomas
- Sites: below the tentorium, posterior fossa-cerebellum, around III V., optic nerve
- Grossly well circumscribed gelatinous mass - cystic with mural nodule
- Microscopic
 - elongated hair-like (pilo) stellate astrocytic cells – loosely knit
 - Rosenthal fibers

Glioblastoma Multiforme

Glioblastoma Multiforme

Glioblastoma Multiforme

Glioblastoma - pseudopalisade

10.0-7

Prognosis

-Age of patient

Size, site and histology of neoplasm

Astrocytomas

Adults:

Supratentorial Solid Malignant Fibrillary

Childhood:

Infratentorial Cystic Benign Pilocytic

Oligodendroglioma

- Cells of origin: Oligodendrocytes
- Common in cerebral hemispheres
- Calcifications common among all gliomas
- Grades: Low grade Anaplastic
- 1P19 +19q LOH sensitive to therapy

Ependymoma

- Arises from the ependymal surface usually in the fourth ventricle and projects into the CSF pathway.
- Tumors are well differentiated
- Invasion of adjacent CNS tissue is uncommon.

Spinal Ependymoma

A special variant, the myxopapillary ependymoma occurs in the cauda equina region in the adults

Neuroectodermal Tumors

- Origin from primitive blast cells.
- Rosettes attempt at nerve formation
- Medulloblastoma Cerebellum c-Myc aggressive phenotype
- 2. Retinoblastoma Retina
- Neuroblastoma Sympathetic nervous system/Adrenal glands/N-Myc amplification aggressive phenotype
 Ganglioneuroma - Mediastinum

Medulloblastoma

- Origin: primitive neuroectodermal cells
- Age: 1st decade of life. Most common brain tumor at this age.
- Site: vermis of cerebellum
- May cause hydrocephalus
- Meningeal infiltration is frequent and CSF seeding / subarachnoid dissemination is common
- C-Myc amplification aggressive phenotype

Medulloblastoma

Lymphoma

Rare

- Primary lymphomas have an increased frequency in immunosuppressed individuals and AIDS patients
- EBV implicated in these neoplasms
- Mostly high grade NHL of B-cell type
- Have a poor prognosis

Meningioma:

- Arise from meningothelial cells of arachnoid granulations.
- Adjacent to venous sinuses.
- Common sites parasagittal region, sphenoidal wing, olfactory groove, foramen magnum
- Nodular, capsulated, slow growing-Benign
- Form whorls of cells
- Psammoma bodies in the center.
- Effect by pressure.
- No infiltration or metastasis (Benign).

Meningioma

Meningothelial whorls

Psammoma bodies

Tumors of Nerve Roots and Peripheral Nerves

1. Schwannoma

8th Cranial nerve (Acoustic sch.) Spinal roots, posterior Peripheral nerves

2. Neurofibroma

Spinal Roots,[dorsal nerve roots] rare Peripheral nerves

 Malignant variants Malignant peripheral nerve sheath tumor (MPNT) Rare

Nerve Sheath Tumors:

Neurofibroma:

- Epi & endoneurial fibroblasts.
- Form whorls of fibroblasts
- Well differentiated, benign,
- Two types:
 - Classic form Cutaneous / nerve - Solitary collagen matrix, spindle cells,
 - Plexiform Multiple, infiltrative, myxoid.

Nerve Sheath Tumors:

Schwannoma:

- Benign.
- Encapsulated:
- Note the more cellular "Antoni A" pattern on the left with palisading nuclei surrounding pink areas (Verocay bodies).
- On the right is the "Antoni B" pattern with a looser stroma, fewer cells, and myxoid change.

• Acoustic Schwannoma •Vestibular branch of 8th cranial nerve in the region of the cerebellopontine angle

Neurofibromatosis - Von Recklinghausen

Dominant inheritance Multiple neurofibromas Central - CNS peripheral nerves Increased incidence of: meningioma glioma schwannoma - bilateral Cafe-au-lait (melanosis) in skin Elephantiasis: increased connective tissue

Neurofibromatosis:

Type I (common):(AD, 17q, 1:3000)

- Plexiform & solitary neurofibromas
- Optic nerve gliomas, Lisch nodules, Café au lait spots.
- Type II (rare):(22q, 1:40,000)
- Bilateral acoustic schwannoma/osis
- Multiple meningioma/osis, ependymoma of spinal cord

Metastatic Tumours

- Most common brain tumor in adults
- Compression and invasion Metastasis
 - hematogenous
 - direct spread
- Most are in cerebrum
- Occurs at boundary of grey and white matter
- Breast,lung,kidney, colon,melanoma
- Discrete, globoid, sharply demarcated tumors. Amenable to surgical resection
- Extradural metastasis presents as paraplegia

Brain Metastasis

Seriousness of Brain injuries and disorders

Brain <u>limited</u> self-renewal capability Current mode of therapy is inadequate

. . .

We need a new approach ...

- To compensate the brain for the lost neural tissues.
- But ...organ donation doesn't apply here

Stem cell .. The hope

Unspecialized cells that are capable of :

Cell Lineage Self-renewal Self renewing stem cells Differentiation Early progenitor cells Oligofendrocyte Astrocyte Neuron

CNS TUMORS

The Strategy

Stem cells

Neural differentiation

Transplanting generated neural tissue

In Clinics

CNS TUMORS

An Example .. Umbilical cord blood stem cells

Umbilical cord blood stem cells

CNS TUMORS

Neural differentiation

Property of Dr. Hamad Yaseen Kuwait University

CNS TUMORS

Any Questions? Thank you